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The role of diffusion in the kinetics of reversible ligand binding to receptors on a cell surface or to
a macromolecule with multiple binding sites is considered. A formalism is developed that is based
on a Markovian master equation for the distribution function of the number of occupied receptors
containing rate constants that depend on the ligand diffusivity. The formalism is used to derive (1) a
nonlinear rate equation for the mean number of occupied receptors and (2) an analytical expression
for the relaxation time that characterizes the decay of equilibrium fluctuations of the occupancy of
the receptors. The relaxation time is shown to depend on the ligand diffusivity and concentration, the
number of receptors, the cell radius, and intrinsic association/dissociation rate constants. This result
is then used to estimate the accuracy of the ligand concentration measurements by the cell, which,
according to the Berg-Purcell model, is related to fluctuations in the receptor occupancy, averaged
over a finite interval of time. Specifically, a simple expression (which is exact in the framework of
our formalism) is derived for the variance in the measured ligand concentration in the limit of long
averaging times. [http://dx.doi.org/10.1063/1.4816105]

I. INTRODUCTION

Thermodynamically independent receptors on the sur-
face of a cell are in fact coupled due to the finite rate of ligand
diffusion. Because the binding sites compete for ligands, the
rate of binding to one receptor depends on the occupancy of
the other receptors. This was first pointed out by Berg and
Purcell1 in their classic paper on chemotaxis. Moreover, they
showed that such diffusion-induced interactions had a sur-
prising consequence. Specifically, diffusion places a physical
limit on how accurately a cell can determine the concentration
of an attractant in its surrounding environment.

Berg and Purcell suggested that the best strategy a cell
can use to measure the bulk concentration of a ligand is to
determine the occupancy of its receptors, not just at a sin-
gle instant of time, but averaged over a time interval of du-
ration T. This time-averaged occupancy still fluctuates about
the equilibrium occupancy when T is finite. At first sight it
appears that the cell can reduce the size of these fluctuations
by simply increasing the number N of receptors on its surface
(i.e., averaging over both time and receptors). Using clever
but heuristic arguments, Berg and Purcell showed that when
T is sufficiently large, the variance of the time-averaged occu-
pancy does not vanish as N increases. Rather it reaches a finite
value determined by the diffusivity of the ligand, the size of
the cell, and the averaging time. This result for the limiting
accuracy has recently been rederived in different ways2, 3 that
appear to us to still contain some uncontrolled approximations
and heuristic elements.

In this paper we present what may be regarded as the
most straightforward and simplest approximate approach to
this problem that has a firm theoretical foundation. Instead

of trying to incorporate the effect of diffusion by modify-
ing the chemical rate equation for the mean occupancy,4

our starting point is a set of chemical rate equations for
the concentrations of cells with different numbers of occu-
pied receptors. These equations are equivalent to the master
equation for the distribution function of the number of oc-
cupied receptors. We then replace all chemical association
rate constants by their diffusion-influenced counterparts ob-
tained using the Smoluchowski-Collins-Kimball5 theory of
irreversible bimolecular reactions. Finally, we obtain the cor-
responding dissociation rate constants by requiring that the
equilibrium properties of the system are independent of the
ligand diffusivity, as they must be. In this way, for a cell with
N receptors, we obtain (N + 1) rate equations with rate con-
stants that are functions of the diffusion constant of the ligand.

Starting from these equations (discussed in Sec. II), we
first derive a nonlinear rate equation for the mean occupancy
(Sec. III) and an expression (exact in the framework of our
model) for the relaxation time of the equilibrium autocorrela-
tion function of receptor occupancy (Sec. IV). Since the vari-
ance of the time-averaged occupancy of the receptors is deter-
mined by this autocorrelation function, we use these results
in Sec. V to estimate the accuracy of the ligand concentration
measurements by the cell.

II. THE MODEL

Consider a cell (macromolecule) containing N identical
surface receptors (binding sites) in the presence of ligand at
concentration c. We are interested in the probability, Pn(t),
that n ligands are bound at time t. If the system of interest
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contains many cells, this is proportional to the concentration
of cells with n occupied receptors. When ligand diffusion is
sufficiently fast so that it can be ignored, we can use the for-
malism of standard chemical kinetics to find Pn(t). Let αn be
the pseudo first order association rate constant for binding
a ligand to a cell with n receptors occupied, which is pro-
portional to c, and βn be the dissociation rate constant that
describes the release of a ligand from a cell with n ligands
bound. Then variation of the number of occupied receptors is
described by the following kinetic scheme

0
α0−−−→←−−−
β1

1
α1−−−→←−−−
β2

2 ... N − 1
αn−1−−−→←−−−
βN

N. (2.1)

The corresponding set of rate equations (also called a master
equation) for Pn(t) are

dP0(t)

dt
= −α0P0(t) + β1P1(t),

dPn(t)

dt
= αn−1Pn−1(t)−(αn+βn)Pn(t) + βn+1Pn+1(t), (2.2)

dPN (t)

dt
= αN−1PN−1(t)−βNPN (t),

where n = 1, 2, . . . , N − 1. Equation (2.2) can be written in
matrix form dP/dt = KP, where K is a tri-diagonal (N + 1)
× (N + 1) matrix of rate constants. Any quantity of interest
can be found in terms of the conditional probability of being
in state m at time t given that the system initially was in state n,
Gmn(t). This, in turn, can be expressed as a matrix exponential
G(t) = exp (Kt).

Here we assume that the receptors are identical and bind-
ing is not cooperative. When ligand diffusion is sufficiently
fast, the α’s and β’s can then be expressed in terms of intrin-
sic bimolecular association (k+) and unimolecular dissocia-
tion (k−) rate constants of a cell with a single receptor as

αn = (N − n)k+c, (2.3a)

βn = nk−. (2.3b)

The factors in front of the k’s have a simple interpretation. A
cell with n ligands bound has N − n empty receptors, so a new
ligand can bind in N − n different ways. Similarly, a ligand
can dissociate from n occupied sites in n different ways.

The corresponding normalized equilibrium distribution
can be found by solving Eq. (2.2) when all time derivatives
are zero. The result is that P

eq
n is binomial

P eq
n = N !

n!(N − n)!

(k+c)n(k−)N−n

(k+c + k−)N
. (2.4)

The average number of ligands bound at equilibrium is

〈n〉eq =
N∑

n=0

nP eq
n = k+c

k+c + k−
N, (2.5)

where we have used the fact that for the binomial distribu-
tion, N!/(n!(N − n)!)pn(1 − p)N−n, the average value of n is
Np. The fractional saturation, 〈n〉eq/N, is the same as that for
a cell with one receptor, as to be expected since the recep-
tors were assumed to be thermodynamically independent. For

future references, we note that

〈n2〉eq =
N∑

n=0

n2P eq
n = 〈n〉eq + (1 − 1/N)〈n〉2

eq , (2.6)

so that the occupancy variance at equilibrium is

〈δn2〉eq = 〈n2〉eq − 〈n〉2
eq = k−k+cN/(k+c + k−)2. (2.7)

The average number of ligands bound at time t, 〈n(t)〉,
can be shown to satisfy the rate equation

d〈n(t)〉
dt

= d

dt

N∑
n=0

nPn(t) = k+c(N − 〈n(t)〉) − k−〈n(t)〉.
(2.8)

The solution of this equation is

〈n(t)〉 = 〈n〉eq + (〈n(0)〉 − 〈n〉eq)e−(k+c+k−)t , (2.9)

where 〈n〉eq is given in Eq. (2.5). Thus the kinetics is
completely characterized by a single relaxation time (k+c
+ k−)−1, which is independent of the number of receptors
on the cell surface, as to be expected since the receptors are
non-interacting.

Let us now consider how the diffusive motion of lig-
ands around the cell influences the kinetics of ligand binding.
The problem of developing a theory of reversible diffusion-
influenced reactions that is accurate for all times and con-
centrations is rather challenging (see Ref. 6 and references
therein). The underlying reason is that diffusion makes the
problem inherently many-body and non-Markovian. For ex-
ample, the relaxation to equilibrium is no longer exponential
as in Eq. (2.9) but becomes a power law at very long times.7, 8

Here we shall generalize chemical kinetics in the simplest
possible way that has a solid theoretical foundation. The basic
idea is to modify the rate constants in Eq. (2.3a) in such a way
that the equilibrium properties of the system are unaltered.
The resulting formalism is satisfactory at intermediate times
(the short-time behavior is described by the intrinsic rate con-
stants, and, at very long times, the relaxation is a power law)
when the ligand concentration is not too high.

To illustrate the procedure in the simplest context, con-
sider a single spherical receptor of radius R, which is assumed
to be uniformly reactive with intrinsic association and disso-
ciation rate constants k+ and k−, respectively. Following the
classical work of Collins and Kimball (CK),5 we obtain the
diffusion-influenced association rate for an irreversible reac-
tion by calculating the steady-state flux into a sphere of radius
R. The steady state concentration of the ligand in the bulk sat-
isfies ∇2c(r) = 0, subject to the partially reactive boundary
condition on the surface of the sphere, 4πR2Ddc(r)/dr|r = R

= k+c(R), where D is the diffusion constant of the ligand. In
this way one finds that

kCK
+ = kDk+

kD + k+
, (2.10)

where

kD = 4πDR (2.11)

is the classic Smoluchowski result for a perfectly absorb-
ing sphere (i.e., when the reaction is completely diffusion-
controlled). Equation (2.10) reduces to kCK

+ = k+, as D → ∞
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or k+ → 0, (reaction-controlled limit) and to kCK
+ = kD , as

D → 0 or k+ → ∞, (diffusion-controlled limit). To find the
corresponding diffusion-influenced dissociation rate constant
kCK
− , we use the fact that the equilibrium constant depends

only on the thermodynamic parameters of the system and can-
not depend on the diffusion constant. Since diffusion cannot
influence the equilibrium constant, kCK

+ /kCK
− = k+/k−, and

so

kCK
− = kDk−

kD + k+
. (2.12)

Thus when the effective association rate depends on diffusion,
then so must the effective dissociation rate. The bound state
dissociates to form a contact pair with intrinsic rate constant
k−. But to be considered truly dissociated, the ligand must
diffuse far away from the binding site. The effective dissocia-
tion rate constant kCK

− is the product of k− and the probability
that a ligand, initially in contact with the binding site, diffuses
away rather than recombine, which is given by kD / (kD + k+).

Now let us generalize Eq. (2.10) and find the association
rate constant (αn) to a spherical cell of radius R that has n
ligands bound and (N − n) empty receptors. The receptors
are identical, each with an intrinsic association rate constant
k+. In principle, for any arrangement of receptors, the analog
of kCK

+ could be found by solving the steady state diffusion
equation subject to the appropriate mixed boundary condi-
tions. Since this is rather complicated, here we adopt a much
simpler approach. If the number of receptors is sufficiently
large, and the receptors are uniformly distributed on the sur-
face of the cell, we can, to a reasonable approximation, spread
the localized reactivities uniformly over the entire surface of
the cell. This procedure, in which non-uniform boundary con-
ditions on the cell surface are replaced by an effective uniform
boundary condition, is called “boundary homogenization.”9

In the present context, it appears to have been first used in
Ref. 10, where a surface partially covered by perfectly absorb-
ing sites was treated as a uniform partially absorbing surface.

Thus to modify the reaction-controlled αn in Eq. (2.3a)
to include the influence of diffusion, one can simply replace
k+ in Eq. (2.10) by (N − n)k+. This leads to

αn = kD(N − n)k+c

kD + (N − n)k+
. (2.13)

To find the dissociation rate constant, we use the fact that the
equilibrium constant, αn / βn+1, between cells with n and (n +
1) ligands bound cannot depend on diffusion, so that

αn

βn+1
= P

eq

n+1

P
eq
n

= (N − n)k+c

(n + 1)k−
. (2.14)

Combining this with Eq. (2.13) we obtain

βn+1 = kD(n + 1)k−
kD + (N − n)k+

. (2.15)

The expressions for αn and βn+1 in Eqs. (2.13) and (2.15)
correctly reduce to those in Eqs. (2.3a) and (2.3b) as D → ∞.
The equilibrium occupancy distribution is still given by Eq.
(2.4) for any D.

In the above we have assumed that the binding to an iso-
lated receptor is reaction-controlled. If each receptor is mod-

eled as a partially absorbing disk of radius b, we can general-
ize the above formalism by replacing k+ in Eqs. (2.3a), (2.10),
and (2.13) by 4Dbk+ / (4Db + k+) and k− in Eqs. (2.3b),
(2.12), and (2.15) by 4Dbk− / (4Db + k+).11 Then in the
diffusion-controlled limit, k+ → ∞, the resulting expres-
sion for α0 (see Eq. (2.13)) reduces to the celebrated Berg-
Purcell result 4πDRNb / (πR + Nb).1 Finally, we should
mention that we have used the simplest form of boundary
homogenization here. For more sophisticated versions, see
Ref. 9 and references therein.

III. TIME-DEPENDENCE OF THE AVERAGE
NUMBER OF BOUND LIGANDS

Equation (2.2) with rate constants defined in Eqs. (2.13)
and (2.15) completely specify our model. As mentioned pre-
viously, any quantity of interest can be found numerically by
calculating the matrix exponential of an (N + 1) × (N + 1)
rate matrix. Here we explore how much progress can be made
analytically. We start by deriving an approximate nonlinear
rate equation for the mean number of occupied receptors
〈n(t)〉.

Consider a kinetic scheme in Eq. (2.1) with the rate con-
stants in Eqs. (2.13) and (2.15) rewritten as αn = (N − n)k+cfn
and βn + 1 = (n + 1)k−fn, where fn = kD / (kD + (N − n)k+).
Define a function gn = ∑n−1

m=0 f −1
m , n = 1, 2, ..., N and g0 = 0.

Multiplying both sides of Eq. (2.2) by gn and summing over
all n, it can be shown that 〈gn(t)〉 = ∑N

n=0 gnPn(t) satisfies

d 〈gn(t)〉
dt

= −(k+c + k−)(〈n(t)〉 − 〈n〉eq), (3.1)

where 〈n(t)〉 is the mean number of occupied receptors at
time t and 〈n〉eq is the equilibrium number of occupied re-
ceptors. When kD → ∞, fn = 1, gn = n, and this equation
reduces to Eq. (2.8). Using the definition of fn and the identity∑n−1

m=0 m = n(n − 1)/2, it can be shown that

〈gn(t)〉 =
(

1 + Nk+
kD

+ k+
2kD

)
〈n(t)〉 − k+

2kD

〈n2(t)〉, (3.2)

where 〈n2(t)〉 = ∑N
n=0 n2Pn(t) is the second moment of the

distribution of the number of occupied receptors at time t.
To obtain a closed differential equation for 〈n(t)〉, we

must approximate 〈n2(t)〉 in Eq. (3.2) in terms of 〈n(t)〉. At
equilibrium, 〈n2〉eq is related to 〈n〉eq by Eq. (2.6). We now
assume that this relation holds at all times

〈n2(t)〉 = 〈n(t)〉 + (1 − 1/N)〈n(t)〉2. (3.3)

It can be shown that this is exact for all times when kD →
∞ (i.e., kinetically non-interacting receptors) and initially all
sites are empty. Using Eqs. (3.2) and (3.3), we find that Eq.
(3.1) reduces to a nonlinear rate equation for the average num-
ber of occupied receptors,

d〈n(t)〉
dt

= − kD(k+c + k−)

kD + k+[N − (1 − 1/N )〈n(t)〉] (〈n(t)〉−〈n〉eq).

(3.4)
Aside from the factor 1/N in the denominator, this equa-

tion is equivalent to that obtained by Goldstein and Dembo4

using heuristic arguments.
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This nonlinear rate equation can be solved analytically.
The result is

〈δn(t)〉
〈δn(0)〉 exp

[
− (1 − 1/N)k+(〈δn(t)〉 − 〈δn(0)〉)

kD(k+c + k−)τN

]

= exp

(
− t

τN

)
, (3.5)

where 〈δn(t)〉 ≡ 〈n(t)〉 − 〈n〉eq and the time τN is defined by

τN = 1

k+c + k−
+ k+(k+c + Nk−)

kD(k+c + k−)2
. (3.6)

It is interesting to note that if 〈n(t)〉 in the denominator of
Eq. (3.4) is replaced by 〈n〉eq, then this equation becomes

d〈n(t)〉
dt

= − 1

τN

(〈n(t)〉 − 〈n〉eq ). (3.7)

Thus τN can be interpreted as the relaxation time that de-
scribes how the mean number of occupied receptors ap-
proaches its equilibrium value. In Sec. IV, we will show that
the above expression for τN turns out to be exact within the
framework of our model.

IV. RELAXATION TIME OF THE NUMBER
OF BOUND LIGANDS

The relaxation time is formally defined in terms of the
normalized autocorrelation function of the number of occu-
pied receptors as

τN =
∫ ∞

0

〈δn(t)δn(0)〉eq
〈δn2〉eq dt, (4.1)

where 〈δn2〉eq is the variance given in Eq. (2.7), δn(t) = n(t)
− 〈δn〉eq, and

〈δn(t)δn(0)〉eq =
N∑

m,n=0

(m − 〈m〉eq)Gmn(t)(n − 〈n〉eq )P eq
n .

(4.2)

Here Gmn(t) is the probability of having m ligands bound at
time t given that n ligands were bound initially. It can be ob-
tained from the rate matrix K that corresponds to the kinetic
scheme in Eq. (2.1) as Gmn(t) = (exp (Kt))mn. The integrand
in Eq. (4.1) decreases from unity to zero as time goes from
zero to infinity.

To determine τN, we will use an identity (proved in the
Appendix), which is valid for any function f(n) when the sys-
tem dynamics is described by the kinetic scheme in Eq. (2.1),

∫ ∞

0
〈δf (t)δf (0)〉eqdt =

N∑
n=1

(
βnP

eq
n

)−1

(
N∑

m=n

δf (m)P eq
m

)2

,

(4.3)

where δf(t) = δf(n(t)) = f(n(t)) − 〈f〉eq. We have used a spe-
cial case of this formula previously12 to determine the mean
relaxation time of the equilibrium fluctuations of the popu-
lation of, say, state i (f(n) = δi n) in a system described by
a master equation with nearest-neighbor transitions such as

Eq. (2.2). The continuous analog of this equation has been
used13 to determine the variance of the efficiency of the
Forster resonance energy transfer obtained from photon bursts
of duration T.

To find τN defined in Eq. (4.1), we must choose f(n) = n.
Then δf(n) = δn = n − 〈n〉eq, and for P

eq
n defined in Eq. (2.4),

it can be shown that

N∑
m=n

δmP eq
m = nk−

k+c + k−
P eq

n . (4.4)

Using this along with the definition of βn in Eq. (2.15),
Eq. (4.3) with f(n) = n can be written as∫ ∞

0
〈δn(t)δn(0)〉eqdt

=
N∑

n=1

(
1

k−n
+ (N + 1)k+

kDk−n
− k+

kDk−

)
n2k2

−
(k+c + k−)2

P eq
n .

(4.5)

The remaining sums can be done using Eqs. (2.5) and (2.6).
Putting it all together, we finally find that the relaxation time
of the occupancy of receptors on the cell surface is

τN = 1

k+c + k−
+ k+(k+c + Nk−)

kD(k+c + k−)2
, (4.6)

which is exact for our model. This formula for the relax-
ation time is one of the main results of this paper. In the
reaction-controlled limit (kD → ∞), τN becomes independent
of N and reduces to the relaxation time of a single receptor
(k+c + k−)−1. It is interesting to note that the above result
turns out to be the same as that given in Eq. (3.6), which was
obtained in a non-rigorous way by using the approximate re-
lationship between 〈n2(t)〉 and 〈n(t)〉 in Eq. (3.3).

Finally, we can use τN to construct a single-exponential
approximation for the autocorrelation function 〈δn(t)δn(0)〉eq,
which in general is multiexponential. Specifically

〈δn(t)δn(0)〉eq ≈ 〈δn2〉eqe−t/τN . (4.7)

This is exact both at t = 0 and t = ∞ and has the exact
area as defined in Eq. (4.1). These results will be used in
Sec. V to estimate the accuracy of ligand concentration mea-
surements by the cell.

V. ACCURACY OF THE LIGAND CONCENTRATION
MEASUREMENTS BY A CELL

According to Berg and Purcell,1 a cell measures the bulk
concentration of a ligand by determining the number of oc-
cupied receptors averaged over a time interval of duration T.
Let n(t) be the instantaneous number of occupied receptors.
At equilibrium, this number fluctuates around 〈n〉eq. Imagine
constructing a long trajectory of the number of occupied re-
ceptors, say, by applying the Gillespie algorithm to Eq. (2.2).
Now divide this trajectory into bins of duration T, and cal-
culate the average number of occupied receptors in each bin,
which we will denote by nT. Without loss of generality, we
can set the time in the beginning of each bin equal to zero, so
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that for each bin nT is

nT = 1

T

∫ T

0
n(t)dt. (5.1)

nT approaches its equilibrium value 〈n〉eq as T → ∞. Alterna-
tively, if we average the value of nT over a sufficiently large
number of bins, we again recover 〈n〉eq.

Suppose we can make only one measurement of
nT. The accuracy of this measurement (i.e., how close
it is to 〈n〉eq) is characterized by the variance of the
time-averaged occupancy 〈δn2

T 〉eq , where δnT = nT − 〈n〉eq
= (1/T )

∫ T

0 δn(t)dt . This variance is related to the autocorre-
lation function 〈δn(t)δn(0)〉eq by

〈δn2
T 〉eq = (1/T 2)

∫ T

0

∫ T

0
〈δn(t1)δn(t2)〉eqdt1dt2

= (2/T 2)
∫ T

0
dt2

∫ t2

0
〈δn(t1)δn(t2)〉eqdt1

= (2/T 2)
∫ T

0
(T − t)〈δn(t)δn(0)〉eqdt, (5.2)

where we have used the fact that the equilibrium autocorrela-
tion function 〈δn(t1)δn(t2)〉eq depends only on the time differ-
ence |t2 − t1|.

When the averaging time T significantly exceeds the re-
laxation time τN, the above variance simplifies to

〈δn2
T 〉eq = 2

T

∫ ∞

0
〈δn(t)δn(0)〉eqdt

= 2τN 〈δn2〉eq
T

, T >> τN, (5.3)

where we have used the definition of τN in Eq. (4.1). Since
we have evaluated τN exactly within the framework of our
model, Eq. (5.3) provides the exact large-T behavior of the
variance 〈δn2

T 〉eq . We can get an approximate expression for
the variance for all T, by substituting the single-exponential
approximation for the autocorrelation function 〈δn(t)δn(0)〉eq

in Eq. (4.7) into Eq. (5.2) and evaluating the integral. The
result is〈

δn2
T

〉
eq

≈ 2(T/τN − 1 + e−T/τN )

(T/τN )2
〈δn2〉eq . (5.4)

This is exact in both the T → 0 and T → ∞ limits and pro-
vides a useful approximation for intermediate bin times.

Following Berg and Purcell,1 we introduce a time-
averaged ligand concentration, cT, measured by a cell with
N receptors on its surface, which is related to the time-
averaged receptor occupancy nT by

nT = k+cT

k+cT + k−
N (5.5)

(cf. Eq. (2.5)). The variance of the concentration cT is related
to the variance of the time-averaged occupancy by〈

δc2
T

〉
eq

= c2
〈
δn2

T

〉
eq

/〈δn2〉2
eq , (5.6)

where we have used the fact that the variance of a function f(x)
of a random variable x, 〈δf2〉, is related to the mean and vari-
ance of its argument, 〈x〉 and 〈δx2〉, by 〈δf2〉 = f ′(〈x〉)2〈δx2〉,
where f ′(x) = df(x)/dx.

Assuming that T � τN, we find the T-dependence
of 〈δc2

T 〉eq by combining Eqs. (5.3) and (5.6), 〈δc2
T 〉eq/c2

= 2τN/(〈δn2〉eqT ). Using the expression for τN given in
Eq. (4.6), we finally obtain one of the key results of this pa-
per, namely that, for large averaging times, the variance of the
measured concentration is

〈δc2
T 〉eq
c2

= 2

Nk+cT

(
1 + k+c

k−

)
+ 1

2πDRcT

(
1 + k+c

Nk−

)
.

(5.7)

This shows how the relative variance depends on the aver-
aging time T, the number N of receptors on the cell surface,
the cell radius R, ligand concentration c, and diffusion con-
stant D, as well as the intrinsic association and dissociation
rate constants k+ and k−. The expression in Eq. (5.7) is ex-
act within the framework of our model. The first term is the
result predicted by standard chemical kinetics: the variance
corresponding to a single receptor, 2(k+c + k−) / (k−k+cT), is
reduced by a factor of N, as to be expected for independent re-
ceptors. The second term is the result of competition among
the receptors for diffusing ligands. In contrast to the first term,
it does not vanish, as N → ∞. Thus it places a physical limit
on how accurately a cell can determine the concentration of a
ligand.

As N increases, Eq. (5.7) approaches

〈δc2
T 〉eq
c2

= 1

2πDRcT
. (5.8)

Thus at sufficiently large T and N, the variance reaches a limit-
ing value, which is independent of N. This expression differs
from the result given by Berg and Purcell1 only by a factor
(1 + k+c/k−). This is rather remarkable because they evalu-
ated 〈δc2

T 〉eq/c2 using heuristic arguments.
Our result is also related to the more recent work of Wang

et al.,3 who focused on the low concentration limit. Using
a combination of physical arguments and stochastic simula-
tions, they obtained an expression for the variance (Eqs. (9)
and (11) from Ref. 3), which in the c → 0 limit is the same
as our Eq. (5.7) in this limit. It would be interesting to see if
their intuitive arguments could be generalized to treat the case
of arbitrary ligand concentration.

VI. CONCLUDING REMARKS

The number of occupied receptors on the surface of a cell
fluctuates around its equilibrium value. In this paper we study
how ligand diffusion affects the decay of equilibrium fluctua-
tions of the receptor occupancy. Main results of our analysis
are given in Eqs. (3.4), (4.6), and (5.7). Specifically, the non-
linear rate equation in Eq. (3.4) describes the relaxation to
equilibrium of the mean number of occupied receptors. The
expression in Eq. (4.6) gives the relaxation time that char-
acterizes the decay of equilibrium fluctuations of the recep-
tor occupancy. These results were obtained in Secs. III and
IV using the formalism developed in Sec. II. The formal-
ism is based on a set of ordinary rate equations, Eq. (2.2),
for the distribution function of the number of occupied re-
ceptors. The association/dissociation rate constants entering
into these equations, given in Eqs. (2.13) and (2.15), are



121910-6 A. M. Berezhkovskii and A. Szabo J. Chem. Phys. 139, 121910 (2013)

functions of the ligand diffusion constant. We applied the
above results to the Berg-Purcell model of the ligand concen-
tration measurements by a cell, which assumes that the cell
learns about the concentration of an attractant by determining
the time-averaged occupancy of its surface receptors. A sim-
ple expression in Eq. (5.7), which is exact in the framework of
our model, gives the variance of the concentration measured
by the cell when the averaging time is sufficiently long. Our
results show how the accuracy of the measurement depends
on the number of receptors on the cell surface, the ligand con-
centration and its diffusivity, intrinsic association/dissociation
rate constants, and the cell radius.

The theory presented here can be extended by using the
self-consistent relaxation time approximation (SCRTA) for
the kinetics of reversible diffusion-influenced reactions.6 For
multiple reaction sites the algebra becomes rather compli-
cated. Therefore, to get a feeling for the nature of the cor-
rections, let us consider the simplest case of a single spherical
receptor modeled as a uniformly reactive sphere of radius R
that can reversibly bind only one ligand. In such a case, our
result in Eq. (5.7) (N = 1, T � τ 1) reduces to

〈δc2
T 〉eq
c2

= 2

kCK+ cT

(
1 + k+c

k−

)
, (6.1)

where kCK
+ is given by Eq. (2.10). When D → ∞, kCK

+ be-
comes equal to k+, and the above result reduces to one that
can be obtained in the framework of chemical kinetics. To ob-
tain the corresponding result within the framework of SCRTA,
we note that by Onsager’s regression hypothesis the normal-
ized autocorrelation function 〈δn(t)δn(0)〉eq / 〈δn2〉eq is identi-
cal to the relaxation function, R(t), which describes relaxation
of the receptor occupancy to equilibrium. Using Eqs. (4.11)
and (4.15) of Ref. 6 we find that the variance of the mea-
sured concentration is given by Eq. (6.1) with kCK

+ replaced

by kSCRTA
+ , which is a solution to

1

kSCRTA+
= 1

kCK+

− k+c

kD(k+c + k−){1 +
√

k+D/[R2(k+c + k−)kSCRTA+ ]}
,

(6.2)

where kD is given by Eq. (2.11). The rate constant kSCRTA
+

is a function of the ligand concentration. It approaches kCK
+

from above as c tends to zero. When the spherical receptor
is immobile and the ligands do not interact with each other,
Eq. (6.2) is expected to be essentially exact for all c.
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APPENDIX: RELAXATION TIME OF AN
AUTOCORRELATION FUNCTION

The relaxation time that describes the decay of the equi-
librium fluctuations of a certain quantity is related to the time
integral of the autocorrelation function of that quantity (e.g.,
see Eq. (4.1)). Here we derive Eq. (4.3) by evaluating this
integral analytically for any system whose dynamics is de-
scribed by the kinetic scheme shown in Eq. (2.1). We begin
by rewriting the formal expression for the time integral of the
autocorrelation function of δfn = fn − 〈f〉eq as

∫ ∞

0
〈δf (t)δf (0)〉eqdt =

∫ ∞

0

N∑
m, n=0

δfmGmn(t)δfnP
eq
n dt

=
N∑

m=0

δfmvm, (A1)

where we have defined

vm =
N∑

j=0

∫ ∞

0
Gmj (t)dt δfjP

eq

j . (A2)

Here P
eq

j is the normalized equilibrium population of state

j,
∑N

j=0 P
eq

j = 1, that can be found using the detailed bal-
ance condition αi−1P

eq

i−1 = βiP
eq

i . The propagator or Green’s
function Gij(t) satisfies the master equation

d

dt
Gij (t) =

N∑
m=0

KimGmj (t), (A3)

with initial condition Gij(0) = δij. Kim is the imth element of
a tri-diagonal rate matrix K that corresponds to the kinetic
scheme in Eq. (2.1).

Multiplying both sides of Eq. (A2) by Kim, summing over
all m, and using Eq. (A3), we find that

N∑
m=0

Kimvm =
N∑

j=0

∫ ∞

0

d

dt
Gij (t)dt δfjP

eq

j . (A4)

Evaluating the time integral using the facts that Gij(0)
= δij, Gij (∞) = P

eq

i , and
∑N

j=0 δfjP
eq

j = 0, we obtain

N∑
m=0

Kimvm = −δfiP
eq

i (A5)

or explicitly

αi−1vi−1 − αivi − βivi + βi+1vi+1 = −δfiP
eq

i . (A6)

Let us now set α−1 = β0 = αN = βN+1 = 0, so that one will
not have to worry about the end points in what follows.

Summing both sides of Eq. (A6) from i = n to i = N, we
find that

− αn−1vn−1 + βnvn =
N∑

i=n

δfiP
eq

i . (A7)

Now, we introduce a new variable un defined as

vn = unP
eq
n . (A8)
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Using the detailed balance condition αn−1P
eq

n−1 = βnP
eq
n , we

can write Eq. (A7) as

un − un−1 = (
βnP

eq
n

)−1
N∑

i=n

δfiP
eq

i . (A9)

Summing both sides from n = 1 to n = m, we obtain

um = u0 +
m∑

n=1

(
βnP

eq
n

)−1
N∑

i=n

δfiP
eq

i . (A10)

We use this to find vm from Eq. (A8). Substituting the result
into Eq. (A1), we arrive at

∫ ∞

0
〈δf (t)δf (0)〉eqdt

=
N∑

m=1

δfmP eq
m

m∑
n=1

(
βnP

eq
n

)−1
N∑

i=n

δfiP
eq

i , (A11)

where we have used the fact that
∑N

m=0 δfmP
eq
m = 0. By in-

terchanging the order of summation, we recover Eq. (4.3).
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